Факторы формирования цены на предметы искусства с применением текстового анализа новостей в Твиттере
https://doi.org/10.33293/1609-1442-2020-2(89)-114-131
Аннотация
В данной работе были подтверждены гипотезы о влиянии индекса настроений в сети Твиттер на ценообразование предметов искусства и разницу между предварительной оценкой экспертов и итоговой ценой аукциона. Гипотезы были протестированы с помощью выборки из 83 картин, выбранных на основе рейтингов интернет-ресурса ARTNET o самых дорогих когда-либо проданных произведениях искусства за последние 10–15 лет. Выборка состояла из 25 художников, по каждому из них был составлен индекс настроений в сети Твиттер. Данный индекс был создан путем проведения сентимент-анализа каждого твита о художнике по хэштегу за период от двух до четырех месяцев между анонсами продажи в открытых источниках и непосредственной продажей работы по двум словарям AFINN и NRC.
Об авторах
Елена Анатольевна ФедороваРоссия
профессор ФУ и НИУ ВШЭ
Диана Вилевна Зарипова
Россия
бакалавр
Игорь Сергеевич Демин
докт. экон. наук, профессор департамента анализ данных и принятия решений
Список литературы
1. Демин И. С., Рогов О. Ю., Федорова Е. А. (2019). Применение словарей тональности для текстового анализа // Прикладная информатика. Т. 79. № 1.
2. Agarwal A., Sharma V., Sikka G., Dhir R. (2016). Opinion mining of news headlines using SentiWordNet. Colossal Data Analysis and Networking (CDAN). IEEE, March, pp. 1–5.
3. Agnello R.J., Pierce R. K. (1996). Financial returns, price determinants, and genre effects. Journal of Cultural Economics, no. 20, pp. 359–383.
4. Bollen J., Huina Mao, Xiaojun Zeng (2011). Twitter mood predicts the stock market. Journal of Computational Science, no. 2.1, pp. 1–8.
5. Chan W.S. (2003). Stock price reaction to news and no-news: Drift and reversal after headlines. Journal of Financial Economics, vol. 70, no. 2, pp. 223–260.
6. Goetzmann W. N., Spiegel M. (1995). Non-temporal components of residential real estate appreciation. Review of Economics and Statistics, no. 77 (1), pp. 199–206.
7. Piles de R. (1989). Cours de peinture par principes. Ed. by J. Thuillier. Paris: Gallimard.
8. Mao H., Counts S., Bollen J. (2011). Predicting financial markets: Comparing survey, news, twitter and search engine data. Preprint.
9. Rengers M., Velthuis O. (2002). Determinants of prices for contemporary art in Dutch Galleries, 1992–1998. Journal of Cultural Economics, no. 26 (1), pp. 1–28.
10. Renneboog L., Van Houtte T. (2002). The monetary appreciation of paintings: From realism to Magritte. Cambridge Journal of Economics, no. 26 (3), pp. 331–357.
11. Sagot-Duvauroux D. (2003). Art prices. In: Towse R. (ed.). A Handbook of Cultural Economics. Cheltenham: Edward Elgar.
12. Sagot-Duvauroux D., Pflieger S., Rouget B. (1992). Factors affecting price on the contemporary art market. In: Towse R., Khakee A. (eds). Cultural Economics. Berlin, Heidelberg: Springer-Verlag, pp. 91–102.
13. Sproule R., Valsan C. (2006). Hedonic models and pre-auction estimates: Abstract art revisited. Economics Bulletin, no. 26 (5), pp. 1–10.
14. Tetlock P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, vol. 62, no. 3, pp. 1139–1168.
15. Velthuis O. (2005). Talking prices: Symbolic meanings of prices on the market for contemporary art. Princeton, Oxford: Princeton University Press.
16. Wang H., Can D., Kazemzadeh A., Bar F., Narayanan S. (2012). A system for real-time twitter sentiment analysis of 2012 us presidential election cycle. Proceedings of the ACL, July. System Demonstrations Association for Computational Linguistics, pp. 115–120.
Рецензия
Для цитирования:
Федорова Е.А., Зарипова Д.В., Демин И.С. Факторы формирования цены на предметы искусства с применением текстового анализа новостей в Твиттере. Экономическая наука современной России. 2020;(2):114-131. https://doi.org/10.33293/1609-1442-2020-2(89)-114-131
For citation:
Fedorova E.A., Zaripova D.V., Demin I.S. Factors of Price Formation for Art Objects With the Application of Text Analysis of Twitter News. Economics of Contemporary Russia. 2020;(2):114-131. (In Russ.) https://doi.org/10.33293/1609-1442-2020-2(89)-114-131