Transdisciplinary approach to the concept of quantum technologies in management
https://doi.org/10.33293/1609-1442-2025-28(4)-22-35
EDN: QUCHQI
Abstract
The purpose of the paper – to demonstrate the importance of a transdisciplinary approach based on probabilistic and cenological theories in identifying the potential of quantum technologies (computers, calculations, communications, sensing, etc.) in the realities of an information-network society for the formation of tools for sustainable economic development. The (techno)cenological approach used in science, string theory, the convergent model of nano-, bio-, info-, cogno- and social technologies (NBICS technologies), the quantum model of D. Bohm, and the holistic (integral) approach are selected. In the means of methodology and logics of scientific research as a component of modern scientific knowledge the transdisciplinary approach is used, which makes possible to show the importance of quantum technologies (quantum computers, etc.) in achieving sustainable development of regional communities. Based on scientific synthesis, the role of the transdisciplinary approach as a methodological and logical source of the invariant of “stability” (“sustainability”), which is recognized as functionality of most processes in the world, including socio-natural reality, was proved. This necessitates the development of a different probabilistic view of reality and topological technologies, including tools, technologies, and principles that quantum representation provides through the possibility of proactively preserving complexity. The stability invariant studied from the position of a transdisciplinary approach allows us to identify the significance of the theory of quantum systems in modeling social, economic, cultural and other processes that primarily influence the emerging new productive forces of society in the context of cenological theory, which entails the emergence of a qualitatively different society.
Keywords
Journal of Economic Literature (JEL): R10; O21
About the Authors
Aleksandr N. KuzminovRussian Federation
Dr. Sci. (Economics)
Sergey A. Nekrasov
Russian Federation
Dr. Sci. (Economics)
Elena V. Polikarpova
Russian Federation
Dr. Sci. (Philos.)
Vitaly S. Polikarpov
Russian Federation
Dr. Sci. (Philos.), Professor
References
1. Bogdanova N.V. (2022). Quantum theory as a productive force – from Hamilton’s quaternion algebra to technologies of the 3rd millennium. Economic and Social-Humanitarian Studies, no. 4 (36), pp. 61–69. (In Russ.) DOI: 10.24151/2409-1073-2022-4-61-69
2. Borokh O.N., Lomanov A.V. (2024). Productive forces and Chinese relations. Russia in Global Affairs, no. 22(5), pp. 120–141. (In Russ.) DOI: 10.31278/1810-6439-2024-22-5-120-141
3. Gnatyuk V.I. (2023). Quantum rank analysis in the management of electricity consumption of technocenosis. Electronic text data. Kaliningrad. (In Russ.) URL: http://gnatukvi.ru/index.files/kvarandin.pdf (date of access 09/12/2024)
4. Gorelova G.V., Zakharova E.N., Ginis L.A. (2005). Cognitive analysis and modeling of sustainable development of socio-economic systems. Rostov-on-Don: Rostov University Publishing House. 288 p. (In Russ.)
5. Green B. (2021). Until the End of Time: Consciousness, Matter, and the Search for the Meaning of Life in a Changing Universe. Moscow: Alpina Non-Fiction. 548 p., p. 192. (In Russ.)
6. Domnikov A. Yu., Domnikova L.V. (2017). Management of regional electric power industry development in the context of economic imbalances. Yekaterinburg: FGAOU VO UrFU, RFBR, 360 p. (In Russ.)
7. Kazantsev A.K., Kiselev V.N. et al. (2012). NBIC Technologies. Innovation Civilization of the 21st Century. Moscow: INFRA-M. 384 p. (In Russ.)
8. Mokiy V.S. (2009). Fundamentals of transdisciplinarity. Nalchik: The state enterprise Republican Polygraph Plant named after the 1905 Revolution. 368 p. (In Russ.)
9. Nazaretyan A.P. (2020). Mysterious singularity of the 21st century in the light of mathematical history. In the collect.: Evolution. Evolutionary facets of singularity. Volgograd, pp. 80–101 (In Russ.)
10. Polikarpov V.S., Kuzminov A.N. et al. (2015). Economy of the East and West: Methodological Approaches. Rostov-on-Don: Southern Federal University. 180 p.
11. (In Russ.)
12. Polikarpov V.S., Kureichik V.M. et al. (2010). Philosophy of NBIC-technologies. Philosophical problems of the latest technologies. Taganrog: Publishing house of TTI SFedU. 61 p. (In Russ.)
13. Polikarpov V.S., Paleev A.V. et al. (2020). The Internet as a Cyber-Physical Weapon. Rostov-on-Don, Taganrog: Southern Federal University Publ. House. 105 p. (In Russ.)
14. Polikarpova E.V. (2018). Modern ICT and the “psychocosmos” of man. Taganrog: Publishing house of TTI SFU, pp. 58–59 (In Russ.)
15. Piao Yangfan (2024). Accelerating the Development of New Quality Productive Forces and Promoting China’s High-Quality Development. Sakhalin Media. 07.05.2024. (In Russ.) URL: http://vladivostok.china-consulate.gov.cn/rus/zlgdt_2/202405/t20240508_11301017.htm (accessed: 01.06.2024).
16. Taleb N.N. (2009). Black Swan. Under the sign of unpredictability. Moscow: CoLibri, 525 p. (In Russ.)
17. Thom R. (2002). Structural stability and morphogenesis. Transl. from Engl. Moscow: Logos. 280 p. (In Russ.)
18. West J. (2018). Scale: Universal laws of growth, innovation, sustainability and pace of life of organisms, cities, economic systems and companies. Moscow: Azbuka-Business, Azbuka-Atticus. 512 p. (In Russ.)
19. Fufaev V.V. (2006). Economic cenosis of organizations. Moscow–Abakan. Center for systems research. 76 p. (In Russ.)
20. Khrennikov A. Yu. (2008). Introduction to quantum information theory. Moscow: Fizmatlit. 284 p., pp. 245–249 (In Russ.)
21. Chernikova I.V., Chernikova D.V. (2019). Methodological and structural transformations in the development of modern science. Bulletin of Tomsk State University. Philosophy. Sociology. Political Science, no. 49, pp. 60–68. (In Russ.) DOI: 10.17223/1998863X/49/7
22. Shing-Tung Yau, Nadis St. (2019). Outline of Life. A Mathematician in Search of the Hidden Geometry of the Universe. Moscow: Alpina Digital. 233 p.
23. (In Russ.)
24. Bayerstadler A., Becquin G. et al. (2021). Industry quantum computing applications. EPJ Quantum Technology, no. 8, p. 25. DOI: 10.1140/epjqt/s40507-021-00114-x
25. Bettencourt L.M.A. (2013). The origins of scaling in cities. Science. Jun 21; no. 340(6139), pp. 1438–1441. DOI: 10.1126/science.1235823
26. Bonab А.В., Fedele М. et al. (2023). In complexity we trust: A systematic literature review of urban quantum technologies. Technological Forecasting and Social Change, vol. 194, 122642. DOI: 10.1016/j.techfore.2023.122642
27. Broto V.C., Allen А. (2012). Rapport Interdisciplinary perspectives on urban metabolism. Journal of Industrial Ecology, no. 16, pp. 851–861. DOI: 10.1111/j.1530-9290.2012.00556
28. Gamberini S.J., Rubin L. (2021). Quantum sensing’s potential impacts on strategic deterrence and modern warfare. Orbis, no. 65(2), pp. 354–368. DOI: 10.1016/j.orbis.2021.03.012
29. Gill S.S., Kumar A. et al. (2021). Quantum computing: A taxonomy, systematic review and future directions. Software: Practice and Experience, no. 52, pp. 66–114. DOI: 10.1002/spe.3039
30. Huang M., Newman M., Szegedy А. (2020). Explicit lower bounds on strong quantum simulation. IEEE Trans. Inf. Theory, no. 66 (9), pp. 5585–560. DOI: 10.1109/TIT.2020.3004427
31. Kaku M. (2023). Quantum Supremacy. How the Quantum Computer Revolution Will Change Everything. New York: Doubleday, 352 p. URL: https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=2022046826&searchType=1&permalink=y
32. Lyon D. (2010). Surveillance, power and everyday life. // P. Kalantzis-Cope, K. Gherab-Martín (Eds.). In: Emerging Digital Spaces in Contemporary Society: Properties of Technology. London (UK): Palgrave Macmillan, pp. 107–120. DOI: 10.1057/9780230299047_18
33. Macionis J., Parrillo V.N. (2017). Cities and Urban Life Pearson. Upper Saddle River (N.J.): Pearson/Prentice Hal. URL: https://archive.org/details/citiesurbanlife00john/page/n5/mode/2up
34. Markna J., Palatia Т. et al. (2023). Unveiling Advanced Computational Applications in Quantum Computing: A Comprehensive Review. International Journal of Advanced Nano Computing and Analytics, no. 2. DOI: 10.61797/ijanca.v2i2.284
35. Ollitrault P.J., Miessen A., Tavernelli I. (2021). Molecular quantum dynamics: a quantum computing perspective. Accounts of Chemical Research, no. 54, pp. 4229–4238. DOI: 10.1021/acs.accounts.1c00514
36. Peng Benhong, Nanjie Xu et al. (2024). Promoting green investment behavior in “belt and road” energy projects: A quantum game approach. Technological Forecasting and Social Change, vol. 204, 123416. DOI: 10.1016/j.techfore.2024.123416
37. Petrova E., Tiunov E. et al. (2024). Fractal States of the Schwinger Model. Physical Review Letters. 132(5), 050401. DOI: 10.1103/PhysRevLett.132.050401
38. Piacentini F., Adenier G. et al. (2015). Metrology for quantum communication. IEEE Globecom Workshops (GC Wkshps), pp. 1–5. DOI: 10.1109/GLOCOMW.2015.7413960
39. Qing Zhong, Jiahao Liang et al. (2023). Analysis of large-scale power quality monitoring data based on quantum clustering. Electric Power Systems Research, Volume 220, 109366. DOI: 10.1016/j.epsr.2023.109366.
40. Raymer M., Monroe C. (2019). The US National Quantum Initiative. 2019. Quantum Science and Technology, 4. 020504. DOI: 10.1088/2058-9565/ab0441
41. Sarah E. Th., Wagner L. (2024). Deterministic storage and retrieval of telecom light from a quantum dot single photon source interfaced with an atomic quantum memory. Science Advances,12 Apr., vol. 10, is. 15. DOI: 10.1126/sciadv.adi7346
42. Sigov A., Ratkin L., Ivanov L. (2022). Quantum information technologies. Journal of Industrial Information Integration, vol. 28. 100365. DOI: 10.1016/j.jii.2022.100365
43. Simon D.S., Jaeger G., Sergienko A.V. (eds.). (2017). Quantum Metrology, Imaging, and Communication. Hoboken: Springer International Publ., pp. 91–112. DOI: 10.1007/978-3-319-46551-7_4
44. Stanos S.P. (2017). National Academies of Sciences, Engineering, and Medicine (NASEM). Pain Medicine, no. 18, pp. 1835–1836. DOI: 10.1093/pm/pnx224
45. Tacchino F., Chiesa A. et al. (2019). Quantum computers as universal quantum simulators: state-of-the-art and perspectives. Advanced Quantum Technologies, December 19. DOI: 10.1002/qute.201900052
46. Tanimura М. (2016). Descriptions of “Conceivable Governance” by Analogy with Physics: Innovating a Paradigm of “Quantum Urban Governance”. Response to “Parallel Habitats”. Meijo Review, November, vol. 17, no. 2, pp. 27–46. URL: https://wwwbiz.meijo-u.ac.jp/SEBM/ronso/no10_2/03_TANIMURA.pdf
47. Vita Santa B., Caivano D. et al. (2024). Hybrid quantum architecture for smart city security. Journal of Systems and Software, vol. 217, 112161. DOI: 10.1016/j.jss.2024.112161
48. Wendt А. (2015). Quantum Mind and Social Science. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781316005163
49. Wolf R. (2017). The potential impact of quantum computers on society. Ethics and Information Technology, vol. 17, pp. 271–276. Dec. 19 (6). DOI: 10.1007/s10676-017-9439-z
50. Yates S., Rice R.E. (Eds.). (2020). The Oxford Handbook of Digital Technology and Society. Oxford: Oxford University Press.
51. Zomaya A. (2006). Handbook of Nature-Inspired and Innovative Computing, Integrating Classical Models with Emerging Technologies. New York (NY): Springer. DOI: 10.1007/0-387-27705-6
Review
For citations:
Kuzminov A.N., Nekrasov S.A., Polikarpova E.V., Polikarpov V.S. Transdisciplinary approach to the concept of quantum technologies in management. Economics of Contemporary Russia. 2025;28(4):22-35. (In Russ.) https://doi.org/10.33293/1609-1442-2025-28(4)-22-35. EDN: QUCHQI


























